Starting SCF calculations by superposition of atomic densities

نویسندگان

  • J. H. Van Lenthe
  • R. Zwaans
  • Huub J. J. Van Dam
  • M. F. Guest
چکیده

We describe the procedure to start an SCF calculation of the general type from a sum of atomic electron densities, as implemented in GAMESS-UK. Although the procedure is well known for closed-shell calculations and was already suggested when the Direct SCF procedure was proposed, the general procedure is less obvious. For instance, there is no need to converge the corresponding closed-shell Hartree-Fock calculation when dealing with an open-shell species. We describe the various choices and illustrate them with test calculations, showing that the procedure is easier, and on average better, than starting from a converged minimal basis calculation and much better than using a bare nucleus Hamiltonian.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Half Beam Block Technique in Breast Cancer and It’s Dosimetric Analysis using different Algorithms

Introduction: Single isocentre half-beam block (HBB) technique permits the avoidance of hot and cold spots. This technique is very useful in sparing the underlying ipsilateral lung and heart, if the left breast is treated. The major advantage of this technique is that it facilitates the complete sparing of both contralateral breast and lung. Regarding this, the present study aimed to analyse th...

متن کامل

Population Analysis of Pair Densities - A Study of Bassis Set Dependence

Based on work reported by several authors, one of us (RP) has introduced a Mulliken-like population analysis of pair densities. This scheme, introduced first at the semi-empirical level, was subsequently generalised both for SCF and for post-SCF ab initio methods. A potential problem is the basis set dependence that can be expected for all kinds ofMulliken-like approaches. The main purpose of t...

متن کامل

Approaching the basis set limit for DFT calculations using an environment-adapted minimal basis with perturbation theory: Formulation, proof of concept, and a pilot implementation.

Recently developed density functionals have good accuracy for both thermochemistry (TC) and non-covalent interactions (NC) if very large atomic orbital basis sets are used. To approach the basis set limit with potentially lower computational cost, a new self-consistent field (SCF) scheme is presented that employs minimal adaptive basis (MAB) functions. The MAB functions are optimized on each at...

متن کامل

KINETIC STUDIES USING SEMI-EMPIRICAL SELF- CONSISTENT FIELD (SCF) MOLECULAR ORBITAL (MO) METHOD: PARTI. A MODIFIED NEGLECT OF DIATOMIC OVERLAP (MNDO) STUDY OF THE PYROLYSIS OF ETHYL VINYL ETHER

Using a computer code called MOPAC, an acronym for a general Molecular Orbital Package (Quantum Chemistry Programme Exchange (QCPE) Programme No. 455), the geometries and heats of formation of the reactant, the products and the trdnsition state were computed by the MNDO semi- empiricalself consistent field (SCF) method for the pyrolysis of ethyl vinyl ether. ((Force))calculation on the reac...

متن کامل

Point Dose Measurement for Verification of Treatment Planning System using an Indigenous Heterogeneous Pelvis Phantom for Clarkson, Convolution, Superposition, and Fast Superposition Algorithms

Background: Nowadays, advanced radiotherapy equipment includes algorithms to calculate dose. The verification of the calculated doses is important to achieve accurate results. Mostly homogeneous dosimetric phantoms are available commercially which do not mimic the actual patient anatomy; therefore, an indigenous heterogeneous pelvic phantom mimicking actual human pelvic region has been used to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of computational chemistry

دوره 27 8  شماره 

صفحات  -

تاریخ انتشار 2006